National Changhua University of Education Institutional Repository : Item 987654321/15147
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6498/11670
Visitors : 26653493      Online Users : 162
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item:

Title: Spectroscopic and Computational Characterization of the Nickel-containing F430 Cofactor of Methyl-coenzyme M Reductase
Authors: Craft, Jennifer L.;Horng, Yih-Chern;Ragsdale, Stephen W.;Brunold, Thomas C.
Contributors: 化學系
Keywords: Cofactor F430;Density functional theory;Magnetic circular dichroism;Methyl-coenzyme M reductase;Nickel enzymes
Date: 2004-01
Issue Date: 2013-01-07T02:15:50Z
Publisher: SpringerLink
Abstract: Methyl-coenzyme M reductase (MCR) catalyzes the terminal reaction in methanogenesis, the formation of methane from methyl-coenzyme M and coenzyme B. The active site of MCR binds the prosthetic group F430, a unique nickel hydrocorphin cofactor. Here, spectroscopy and computations are employed in developing detailed electronic descriptions of the Ni(II) and Ni(I) forms of the free cofactor. Absorption, magnetic circular dichroism (MCD), and variable-temperature variable-field MCD data are analyzed within the framework of time-dependent DFT computations to assign key electronic transitions. DFT calculations are further employed to evaluate possible reduced F430 models—a one-electron reduced Ni(I)F430 model and a three-electron reduced Ni(I)Fred430 model (possessing a reduced hydrocorphin ligand)—on the basis of excited-state spectra and published EPR/ENDOR parameters. While calculations on both models yield spectroscopic parameters that are consistent with most experimental data, overall better agreement is achieved using the Ni(I)F430 model, particularly with respect to electronic absorption and 1H ENDOR. The experimentally validated bonding descriptions generated herein show that in Ni(II)F430 the occupied Ni 3d orbitals are too low in energy to significantly perturb the dominant electronic transition involving the and * frontier MOs of the macrocycle (i.e., the HOMOLUMO transition). Upon one-electron reduction of the Ni(II) ion, the occupied Ni 3d orbitals are raised in energy, shifting between the HOMO and the LUMO of the oxidized cofactor. These ground-state changes have a dramatic effect on the excited-state structure, causing a blue shift of the dominant * transition and the appearance of numerous Ni 3dhydrocorphin * charge-transfer features in the vis/near-IR region.
Relation: J. Biol. Inorg. Chem., 9(1): 77-89
Appears in Collections:[Department of Chemistry] Periodical Articles

Files in This Item:

File SizeFormat

All items in NCUEIR are protected by copyright, with all rights reserved.


DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback