National Changhua University of Education Institutional Repository : Item 987654321/15148
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6507/11669
Visitors : 30049687      Online Users : 599
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ir.ncue.edu.tw/ir/handle/987654321/15148

Title: Human Sco1 and Sco2 Function as Copper-binding Proteins
Authors: Horng, Yih-Chern;Leary, Scot C.;Cobine, Paul A.;Young, Fiona B. J.;George, Graham N.;Shoubridge, Eric A.;Winge, Dennis R.
Contributors: 化學系
Date: 2005
Issue Date: 2013-01-07T02:15:50Z
Publisher: American Society for Biochemistry and Molecular Biology
Abstract: The function of human Sco1 and Sco2 is shown to be dependent on copper ion binding. Expression of soluble domains of human Sco1 and Sco2 either in bacteria or the yeast cytoplasm resulted in the recovery of copper-containing proteins. The metallation of human Sco1, but not Sco2, when expressed in the yeast cytoplasm is dependent on the co-expression of human Cox17. Two conserved cysteines and a histidyl residue, known to be important for both copper binding and in vivo function in yeast Sco1, are also critical for in vivo function of human Sco1 and Sco2. Human and yeast Sco proteins can bind either a single Cu(I) or Cu(II) ion. The Cu(II) site yields S-Cu(II) charge transfer transitions that are not bleached by weak reductants or chelators. The Cu(I) site exhibits trigonal geometry, whereas the Cu(II) site resembles a type II Cu(II) site with a higher coordination number. To identify additional potential ligands for the Cu(II) site, a series of mutant proteins with substitutions in conserved residues in the vicinity of the Cu(I) site were examined. Mutation of several conserved carboxylates did not alter either in vivo function or the presence of the Cu(II) chromophore. In contrast, replacement of Asp238 in human or yeast Sco1 abrogated the Cu(II) visible transitions and in yeast Sco1 attenuated Cu(II), but not Cu(I), binding. Both the mutant yeast and human proteins were nonfunctional, suggesting the importance of this aspartate for normal function. Taken together, these data suggest that both Cu(I) and Cu(II) binding are critical for normal Sco function.
Relation: J. Biol. Chem., 280: 34113-34122
Appears in Collections:[Department of Chemistry] Periodical Articles

Files in This Item:

File SizeFormat
index.html0KbHTML585View/Open


All items in NCUEIR are protected by copyright, with all rights reserved.

 


DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback