English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6469/11641
Visitors : 19063766      Online Users : 689
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ir.ncue.edu.tw/ir/handle/987654321/15825

Title: Alexandrov空間上的Jacobi場之研究
Jacobi Fields on Alexandrov Spaces
Authors: 陳健雄
Contributors: 數學系
Keywords: Jacobi場;Alexandrov空間;測地線;黎曼流形
Jacobi field;Alexandrov space;Geodesic line;Riemannian manifold
Date: 1999
Issue Date: 2013-03-12T04:12:07Z
Publisher: 行政院國家科學委員會
Abstract: 探討Jacobi場是黎曼流形上的重要課題,而且其本身在幾何與拓樸也有重要的應用。
我們證明Jacobi場的大小在Alexaddrov空間上不小於其相對的Jacobi場的大小在常曲率空間上。Alexaddrov空間是黎曼流形的推廣有重要的應用。
Jacobi fields is a main tropicsin the course of Riemannian Geometry. It also has many applications in Rimannian Geometry. Alexandrov Spaces is a natural generation of Riemannian manifolds. We prove theorems on Jacobi fieldson Alexandrov Spaces and discuss how it related to geodesic and their angles. Because Alexandrov spaces do not have differentiabl structure, So our methods is different from that of Riemannian manifolds. We use intrinsic means.
Relation: 國科會計畫, 計畫編號: NSC88-2115-M018-010; 研究期間: 8708-8807
Appears in Collections:[數學系] 國科會計畫

Files in This Item:

File SizeFormat
2020101712002.pdf110KbAdobe PDF302View/Open


All items in NCUEIR are protected by copyright, with all rights reserved.

 


DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback