Loading...
|
Please use this identifier to cite or link to this item:
http://ir.ncue.edu.tw/ir/handle/987654321/15825
|
Title: | Alexandrov空間上的Jacobi場之研究 Jacobi Fields on Alexandrov Spaces |
Authors: | 陳健雄 |
Contributors: | 數學系 |
Keywords: | Jacobi場;Alexandrov空間;測地線;黎曼流形 Jacobi field;Alexandrov space;Geodesic line;Riemannian manifold |
Date: | 1999
|
Issue Date: | 2013-03-12T04:12:07Z
|
Publisher: | 行政院國家科學委員會 |
Abstract: | 探討Jacobi場是黎曼流形上的重要課題,而且其本身在幾何與拓樸也有重要的應用。 我們證明Jacobi場的大小在Alexaddrov空間上不小於其相對的Jacobi場的大小在常曲率空間上。Alexaddrov空間是黎曼流形的推廣有重要的應用。 Jacobi fields is a main tropicsin the course of Riemannian Geometry. It also has many applications in Rimannian Geometry. Alexandrov Spaces is a natural generation of Riemannian manifolds. We prove theorems on Jacobi fieldson Alexandrov Spaces and discuss how it related to geodesic and their angles. Because Alexandrov spaces do not have differentiabl structure, So our methods is different from that of Riemannian manifolds. We use intrinsic means. |
Relation: | 國科會計畫, 計畫編號: NSC88-2115-M018-010; 研究期間: 8708-8807 |
Appears in Collections: | [數學系] 國科會計畫
|
Files in This Item:
File |
Size | Format | |
2020101712002.pdf | 110Kb | Adobe PDF | 310 | View/Open |
|
All items in NCUEIR are protected by copyright, with all rights reserved.
|