English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6480/11652
Visitors : 20125555      Online Users : 226
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ir.ncue.edu.tw/ir/handle/987654321/15827

Title: 非正Alexandrov空間的幾何性質研究
On Some Properties of Nonpositively Curved Alexandrov Spaces
Authors: 陳健雄
Contributors: 數學系
Keywords: 亞力山大空間;距離函數;非正曲率;直積;凸函數
Alexandrov space;Distance function;Nonpositive curvature;Product, convex function
Date: 2000
Issue Date: 2013-03-12T04:12:30Z
Publisher: 行政院國家科學委員會
Abstract: 本計劃的主要目的是研究下面的問題並由此問題
的解答了解亞力山大空間的幾何性質:
假設 (M,d) ,(N,d’) 分別為 Alexandrov 空間,
其中M 代表實數軸R, d與d’ 分別為M 與N 空間
上的距離函數。假設函數 f 為定義在實數軸的凸
函數,令距離函數 e代表由 d, d’ 與 f 所誘導的
距離函數。
一個很自然的問題是如果(M,d) 與(N,d’)同時為
非正的Alexandrov 空間,則由這二個空間所產生
的積空間當其距離函數為e’時是否仍為非正
Alexandrov 空間 ?
Reshetnyak 教授提出一個類似的問題。假設
f (t ) = cos Kt 定義在一個閉區間
]
2
,
2
[
K K
I
p p
= - 上,並且假設(N,d’) 為一個
有上界K Alexandrov 空間,那麼空間I 與空間N的
積空間是否仍是一個有上界的Alexandrov 空間。
The purpose of this project is to investigate
the following problems :
Suppose that (M,d) and (N,d’) are
Alexandrov spaces, where M is real line R, d
and d’ are distance function on M and N
respenctively. Let function f be a convex
function define on real line. Let distance
function e be induced from d, d’ and f. It is
easy to define the meaning of induced metric
from
that of Riemannian manifolds. The precise
definition of induced
distance function will be investigated.
The natural question one may ask is that if
both (M.d) and (N,d’) are nonpositive
Alexandrov spaces. Is their product space
with distance function e still a nonpositive
Alexandrov space ?
A similar problem raised by Professor
Reshetnyak is that suppose that f (t ) = cos Kt is
define on the interval ]
2
,
2
[
K K
I
p p
= - .
Suppose that (N,d’) is Alexandrov space with
curvature bounded above by K. Is their product space
(I with N) still a space of curvature bounded from
above?
Relation: 國科會計畫, 計畫編號: NSC89-2115-M018-015; 計畫期間: 8908-9007
Appears in Collections:[數學系] 國科會計畫

Files in This Item:

File SizeFormat
2020101712004.pdf39KbAdobe PDF253View/Open


All items in NCUEIR are protected by copyright, with all rights reserved.

 


DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback