English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6491/11663
Visitors : 24501062      Online Users : 71
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ir.ncue.edu.tw/ir/handle/987654321/16024

Title: 智慧型教學系統之多策略機械學習學生模式---以黑板方法為基礎
A Multistrategy Machine Learning Student Modeling for Intelligent Tutoring Systems--- Based on Blackboard Approach
Authors: 黃木榮
Contributors: 資訊管理學系
Keywords: 相似基礎學習(SBL);解釋基礎學習;案例式推理;智慧型教學系統
Similarity-based Learning;Explanation-based learning;Case-based reasoning;Intelligent tutoring system
Date: 2011
Issue Date: 2013-04-22T07:40:02Z
Publisher: 行政院國家科學委員會
Abstract: 智慧型教學系統之多策略機械學習學生模式: 以黑板方法為基礎摘要本研究試著提出一個使用多策略機械學生模式技術之黑板方法去學習以達成設立之學生學習不一致性行為之目標。這此多策略機械學生模式技術包含歸納推理(相似基礎學習)、演繹推理(解釋基礎學習)與類比推理(案例式推理),根據學生不一致性行為特質,智慧型教學系統(ITS)可探取適當的方法預防學生不一致行為。例如:在學生容易發生不一致行為的題目上加強教學和練習。在ITS 負責教學部份可參考學生不一致性行為特質去選擇適當的教學策略來教學生。本研究研究對象在單一學生致於針對一群學生的研究對象列為未來研究。
A multistrategy machine learning student modeling for intelligent tutoring systems: based on Blackboard approach Abstract This study tries to propose a blackboard approach that uses multistrategy machine learning student modeling techniques to learn for achieving the goals that are set on learning what the properties of the student's inconsistent behaviors are. These multistrategy machine learning student modeling techniques include inductive reasoning (similarity-based learning), deductive reasoning (explanation-based learning), and analogical reasoning (case-based reasoning). According to the properties of the student's inconsistent behaviors, the ITS (intelligent tutoring system) may then adopt appropriate methods, such as intensifying teaching and practice on the topic where the student's inconsistent behavior has happened, to prevent the student's inconsistent behaviors. The instructional component in the ITS also can refer the properties of the student's inconsistent behaviors to select more appropriate teaching strategies to teach the student. This research set the learning object on a single student. After accumulating these inferences from a group of students, we might also learn from them about what kinds of students are easy to have inconsistent behaviors or what conditions most students are easy to have inconsistent behaviors. This is learning from a group of students for the future research.
Relation: 國科會計畫, 計畫編號: NSC99-2410-H018-015; 研究期間: 9908-10007
Appears in Collections:[資訊管理學系所] 國科會計畫

Files in This Item:

File SizeFormat
index.html0KbHTML418View/Open


All items in NCUEIR are protected by copyright, with all rights reserved.

 


DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback