English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6498/11670
Visitors : 27734630      Online Users : 207
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ir.ncue.edu.tw/ir/handle/987654321/16695

Title: Bifurcation of Vortex and Boundary-Vortex Solutions in a Ginzburg-Landau Model
Authors: Chen, Chao-Nien;Yoshihisa Morita
Contributors: 數學系
Date: 2007
Issue Date: 2013-06-05T07:32:28Z
Publisher: IOP
Abstract: We consider a simplified Ginzburg–Landau model of superconductivity in a two-dimensional infinite strip domain under the assumption of the periodicity in the infinite direction. This model equation has two physical parameters, λ, h, coming from the Ginzburg–Landau parameter and the strength of an applied magnetic field, respectively. We study the bifurcation of non-trivial solutions in the parameter space (h, λ), in particular through a bifurcation of the existence of a vortex solution, that is, a solution with isolated zeros. We first observe that in the parameter space there is a smooth (bifurcation) curve on which a solution with k-mode in the periodic direction takes place. This bifurcating solution, however, is vortexless. Then analysing the local bifurcation structure around the critical point at which two bifurcation curves for k and m(>k) intersect, we prove the existence of vortex solutions under a generic condition. Moreover, we show that the solutions have vortices lying on a boundary if the parameters belong to a certain curve emanating from the critical point. The stability of such solutions is also discussed.
Relation: Nonlinearity, 20(4): 943-964
Appears in Collections:[數學系] 期刊論文

Files in This Item:

File SizeFormat

All items in NCUEIR are protected by copyright, with all rights reserved.


DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback