National Changhua University of Education Institutional Repository : Item 987654321/17083
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 6491/11663
造访人次 : 24520429      在线人数 : 72
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 进阶搜寻


题名: Kernel Local Fisher Discriminant Analysis Based Manifold-regularized SVM Model for Financial Distress Predictions
作者: Huang, Shian-Chang;Tang, Yu-Cheng;Lee, Chih-Wei;Chang, Ming-Jen
贡献者: 企業管理學系
关键词: Financial distress;Dimensionality reduction;Support vector machine;Kernel local Fisher discriminant analysis;Semi-supervised learning
日期: 2012-02
上传时间: 2013-07-11T09:05:00Z
出版者: Elsevier Ltd.
摘要: Support vector machines (SVM) have demonstrated excellent performance in numerous areas of pattern recognitions. However, traditional SVM does not make efficient use of both labeled training data and unlabeled testing data. Moreover, high dimensional and nonlinear distributed data generally degrade the performance of a classifier due to the curse of dimensionality in financial distress (or bankruptcy) predictions. To address these problems, this study proposes a novel hybrid classifier which integrates Kernel local Fisher discriminant analysis (KLFDA) with a manifold-regularized SVM (MR-SVM). KLFDA is employed to find an optimal projection which maximizes the margin between data points from different classes at each local area of data manifold, while MR-SVM data-dependently warps the structure of feature space to reflect the underlying geometry of the data manifold. Compared with other dimensionality reduction methods and conventional classifiers, the hybrid classifier performs best.
關聯: Expert Systems with Applications, 39(3): 3855-3861
显示于类别:[企業管理學系] 期刊論文


档案 大小格式浏览次数



DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈