National Changhua University of Education Institutional Repository : Item 987654321/17372
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 6491/11663
造訪人次 : 24507119      線上人數 : 60
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 進階搜尋


題名: Nitrogen-vacancy-related Defects and Fermi Level Pinning in n-GaN Schottky Diodes
作者: Lin, Yow-Jon;Ker, Quantum;Ho, Ching-Yao;Chang, Hsing-Cheng;Chien, Feng-Tso
貢獻者: 光電科技研究所
關鍵詞: Schottky diodes;Fermi level;Schottky barriers;Semiconductor-metal boundaries;Surface states;Vacancies (crystal);Defect states;Gallium compounds,III-V semiconductors;Wide band gap semiconductors;Nickel;Gold;X-ray photoelectron spectra;Capacitance;Conduction bands
日期: 2003-08
上傳時間: 2013-10-02T08:35:57Z
出版者: American Institute of Physics
摘要: The relationship between the surface states related to nitrogen-vacancy defects and surface Fermi level pinning has been investigated using x-ray photoelectron spectroscopy and capacitance–voltage measurements. Barrier heights of 1.09, 0.50, 1.20, and 0.50 eV, respectively, were obtained for Ni/(NH4)2Sx-treated n-GaN, Ni/etched n-GaN, Au/(NH4)2Sx-treated n-GaN and Au/etched n-GaN Schottky diodes. For Schottky diodes treated with (NH4)2Sx, the observed Schottky barrier height is very close to the Schottky limit, due to the reduction of the surface state density. This also suggests that a large number of surface states related to nitrogen-vacancy defects in the etched n-GaN surface would lead to the pinning of the Fermi level at 0.50 eV below the conduction band edge.
關聯: Journal of Applied Physics, 94(3): 1819-1822
顯示於類別:[光電科技研究所] 期刊論文


檔案 大小格式瀏覽次數



DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋