National Changhua University of Education Institutional Repository : Item 987654321/17463
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 6491/11663
造訪人次 : 24520523      線上人數 : 61
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 進階搜尋


題名: Current Transport Mechanism of Heterojunction Diodes Based on the Reduced Graphene Oxide-based Polymer Composite and n-type Si
作者: Lin, Jian-Huang;Zeng, Jian-Jhou;Su, Yu-Chao;Lin, Yow-Jon
貢獻者: 光電科技研究所
關鍵詞: Composite materials;Dark conductivity;Doping;Elemental semiconductors;Graphene;Photoconductivity;Photoemission;Polymers;Semiconductor diodes;Silicon
日期: 2012-04
上傳時間: 2013-10-02T08:37:37Z
出版者: American Institute of Physics
摘要: The present work reports the fabrication and detailed electrical properties of heterojunction diodes based on n-type Si and poly(3,4- ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT:PSS) having the reduced graphene oxide (RGO). This heterojunction diode showed a good rectifying behavior with an ideality factor of 1.2. A photocurrent decay model is presented that addresses the charge trapping effect and doping mechanisms for composite PEDOT:PSS films having RGO sheets. The enhanced dark conductivity was observed by incorporating RGO into PEDOT:PSS. For heterojunction diodes, the high photocurrent density originates from efficient hole transport combined with electron trapping with long-second lifetime.
關聯: Applied Physics Letters, 100(15): 153509
顯示於類別:[光電科技研究所] 期刊論文


檔案 大小格式瀏覽次數



DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋