English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 6507/11669
造訪人次 : 29920853      線上人數 : 451
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 進階搜尋

請使用永久網址來引用或連結此文件: http://ir.ncue.edu.tw/ir/handle/987654321/17735

題名: Periodic Solutions of an Infinite Dimensional Hamiltonian System
作者: Ding, Yan-Heng;Lee, Cheng
貢獻者: 數學系
關鍵詞: Infinite-dimensional Hamiltonian system;Periodic solutions;Variational method
日期: 2005-09
上傳時間: 2013-12-30T06:51:49Z
出版者: Rocky Mountain Mathematics Consortium
摘要: We establish existence and multiplicity of periodic solutions to the infinite dimensional Hamiltonian system { ∂ tu - Δ xu = H v(t,x,u,v)-∂ tv- Δ xv = H u(t,x,u,v) for (t,x) ∈ R × Ω, where Ω⊂R N is a bounded domain or Ω = R N. When Ω is bounded, we treat the situations where H(t, x, z) is, with respect to z = (u, v), sub- or superquadratic, or concave and convex, and discuss also the convergence to homoclinics of sequences of subharmonic orbits. If Ω = R N, we handle the case of superquadratic nonlinearities.
關聯: Rocky Mountain Journal of Mathematics, 35(6): 1881-1908
顯示於類別:[數學系] 期刊論文

文件中的檔案:

檔案 大小格式瀏覽次數
index.html0KbHTML496檢視/開啟


在NCUEIR中所有的資料項目都受到原著作權保護.

 


DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋