English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6491/11663
Visitors : 24523158      Online Users : 67
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ir.ncue.edu.tw/ir/handle/987654321/18398

Title: 利用類神經技術之汽車發電機故障輔助診斷系統
Authors: 吳建達
Contributors: 車輛科技研究所
Keywords: 電壓訊號;故障診斷系統;車輛發電機;離散小波轉換;類神經網路
Voltage signal;Fault diagnosis system;Automotive generator;Discrete wavelet transform;Artificial neural network
Date: 2010
Issue Date: 2014-04-29T07:29:21Z
Publisher: 行政院國家科學委員會
Abstract: 本研究主要是計畫發展一套以汽車發電機電壓訊號為基礎之發電機故障診斷系統。此一系統主要是打算利用小波轉換技術與三種不同架構的類神經網路所建構成的智慧型診斷系統。其原理主要是利用車輛發電機輸出電壓訊號中某些特徵,來預先得知發電機內部元件狀況。在傳統上,汽車充電系統失效時,通常只能藉由一組簡單的充電指示燈來告知駕駛人發電機的狀況,但是此充電指示燈只能告知發電機是否正常發電,並無法提前告知駕駛人發電機在故障初期時所產生的故障訊息或可能的故障原因。在本研究中,將利用離散小波轉換為特徵擷取的方法,藉此減少多餘的特徵向量,在輸出信號分類方面將使用幾種不同之分類技巧,如倒傳遞類神經網路(Backpropagation Neural Network, BP)、廣義迴歸類神經網路(General Regression Neural Network, GRNN)及適應性類神經模糊推論系統 (Adaptive Neuro-Fuzzy Inference System, ANFIS)來進行資料分類以減少直覺性評估的錯誤。本研究計畫以三年時間來深入進行相關性的研究與實現,包括汽車發電機測試平台的建立、故障模擬與訊號特性之探討、離散小波分析理論之實現、智慧型分類技巧的實際運用。最後將此系統應用於實際行駛中車輛之發電機故障監控與輔助診斷。
The project proposed a fault diagnosis system for automotive generators using discrete wavelet transform (DWT) and three different artificial neural network techniques. Conventional fault indications of automotive generators generally use an indicator to inform the driver when the charging system is malfunction. But this charge indicator tells only if the generator is normal or in a fault condition. In the present study, an automotive generator fault diagnosis system is developed and proposed for fault classification of different fault conditions. The proposed system consists of feature extraction using discrete wavelet analysis to reduce complexity of the feature vectors together with classification using the artificial neural network technique. In the output signal classification, three of the back-propagation neural network (BPNN), generalized regression neural network (GRNN) and an adaptive neuro-fuzzy inference system (ANFIS) are used to classify and compare the synthetic fault types in an experimental engine platform.
Relation: 國科會計畫, 計畫編號: NSC99-2221-E018-005; 研究期間: 99/08-100/07
Appears in Collections:[車輛科技研究所] 國科會計畫

Files in This Item:

File SizeFormat
index.html0KbHTML315View/Open


All items in NCUEIR are protected by copyright, with all rights reserved.

 


DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback