Loading...
|
Please use this identifier to cite or link to this item:
http://ir.ncue.edu.tw/ir/handle/987654321/10340
|
Title: | Waveguide- excited microstrip patch antennas—Theory and experiment |
Authors: | Ho, Min-Hua;Michalski, K. A.;Hsu, C.-I G. |
Contributors: | 電子工程學系 |
Date: | 1992-09
|
Issue Date: | 2012-05-22T06:29:18Z
|
Publisher: | IEEE |
Abstract: | An arbitrarily shaped microstrip patch antenna excited through an arbitrarily shaped aperture in the mouth of a rectangular waveguide is investigated theoretically and experimentally. The metallic patch resides on a dielectric substrate grounded by the waveguide flange and may be covered by a dielectric superstrate. The substrate (and superstrate, if present) consists of one or more planar, homogeneous layers, which may exhibit uniaxial anisotropy. The analysis is based on the space domain integral equation approach. More specifically, the Green's functions for the layered medium and the waveguide are used to formulate a coupled set of integral equations for the patch current and the aperture electric field. The layered medium Green's function is expressed in terms of Sommerfeld-type integrals and the waveguide Green's function in terms of Floquet series, which are both accelerated to reduce the computational effort. The coupled integral equations are solved by the method of moments using vector basis functions defined over triangular subdomains. The dominant mode reflection coefficient in the waveguide and the far-field radiation patterns are then found from the computed aperture field and patch current distributions. The radar cross section (RCS) of a plane-wave excited structure is obtained in a like manner. Sample numerical results are presented and are found to be in good agreement with measurements and with published data. |
Relation: | 16th Annual Antenna Applications Symposium, Allerton Park, University of Illinois, Sept. 1992 |
Appears in Collections: | [電子工程學系] 會議論文
|
Files in This Item:
File |
Size | Format | |
index.html | 0Kb | HTML | 663 | View/Open |
|
All items in NCUEIR are protected by copyright, with all rights reserved.
|