English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6491/11663
Visitors : 25191662      Online Users : 83
RC Version 3.2 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ir.ncue.edu.tw/ir/handle/987654321/15891

Title: A Process Pattern Mining Framework for the Detection of Health Care Fraud and Abuse
流程萃取以偵測醫療詐欺及濫用之研究
Authors: Yang, Wan-Shiou
Contributors: 資訊管理學系
Keywords: Clinical pathways;Data mining;Health care fraud and abuse
資料探勘;醫療詐欺及濫用;醫療流程
Date: 2003
Issue Date: 2013-03-27T06:49:08Z
Publisher: 國立中山大學
Abstract: With the intensive need for health insurances, health care service providers’ fraud and abuse have become a serious problem. The practices, such as billing services that were never rendered, performing medically unnecessary services, and misrepresenting non-covered treatments as medically necessary covered treatments, etc, not only contribute to the problem of rising health care expenditure but also affect the health of patients. We are therefore motivated to investigate the detection of service providers’ fraudulent and abusive behavior.

In this research, we introduce the concept of clinical pathways and thereby propose a framework that facilitates automatic and systematic construction of adaptable and extensible detection systems. For the purposes of building such detection systems, we study the problems of mining frequent patterns from clinical instances, selecting features that have more discriminating power and revising detection model to have higher accuracy with less labeled instances.

The performance of the proposed approaches has been evaluated objectively by synthetic data set and real-world data set. Using the real-world data set gathered from the National Health Insurance (NHI) program in Taiwan, the experiments show that our detection model has fairly good prediction power. Comparing to traditional expense driven approach, more importantly, our detection model tends to capture different fraudulent scenarios.
隨著生活品質的改善與醫療資訊的普及,民眾愈來愈重視身體健康,對醫療資源的使用也日益頻繁,因此,對醫療保險的需求日益高漲。在各國不同的制度下,民眾或透過私人保險的購買,或透過國家整體醫療保險的參與,分擔高額醫療費用的風險,以取得醫療服務。在不同的醫療保險制度中,按量計酬(Fee for Service)是一種常見的費用給付方式。在按量計酬的方式下,病人於醫療機構先取得醫療服務,醫療機構再依據所提供的各項診斷、治療服務,逐項向保險機構提出費用申請。因此,醫療機構如果申報較多的醫療服務,便可能取得較多的給付,而使得按量計酬常成為醫療機構浪費、謊報醫療服務的誘因。面對可能的浪費、詐欺行為,保險機構因而常聘請專家以審查醫療案例。然而,專家審查的方式,耗費大量的時間、人力成本,對於大量的保險案例(例如,國家整體醫療保險),往往無法負荷。本研究著眼於此,引入流程分析的概念,提出整體分析架構與方法,透過系統化、自動化的方式,偵測可能的醫療浪費、詐欺行為。
Relation: 博士; 國立中山大學資訊管理學系研究所
Appears in Collections:[資訊管理學系所] 專書

Files in This Item:

File SizeFormat
2060300811001.pdf353KbAdobe PDF1639View/Open


All items in NCUEIR are protected by copyright, with all rights reserved.

 


DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback